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Outline

« Midterm exam two weeks from tonight
covering ODEs and Laplace transforms

* Review last class
« Introduction to phase-plane analysis

* Look at two simultaneous ODEs dy,/dt
and dy,/dt plotted as y, vs. y,

« Look at different “critical points” for
different systems of equations

Calrforrsi Sate Unfversity
Northridge

Review Laplace Transforms

» Use transform tables to transform terms
in differential equation for y(t) into an
algebraic equation for Y(s)

— Derivative transforms give initial conditions
on y(t) and its derivatives

» Manipulate Y(s) equation to sum of
individual terms, “Y(s) subterms”, that
you can find in transform tables

— Manipulation may require use of method of
partial fractions

Californin State [ niversity
Northridge

Review Partial Fractions

Method to convert fraction with several

factors in denominator into sum of

individual factors (in denominator)

e Example is F(s) = 1/(s+a)(s+b)

Write 1/(s+a)(s+b) = A/(s+a) + B/(s+b)

« Multiply by (s+a)(s+b) and equate

coefficients of like powers of s

—1=A(s+b)+B(s+a)

—A+B=0fors!terms and 1 = bA + aB for
s0 terms

Calrforrsi Sate University
Northridge

Review Partial Fractions Il

—A+B=0fors!terms and 1 =bA + aB for
sO terms
— Solving for Aand B givesA=-B=1/(b-a)
» Result: 1/(s+a)(s+b) =
1/[(b - a)(s + a)] - 1/[(b — a)(s + b)]
—So f(t) = [et — eMi(b — a)
This actually matches a table entry
 Follow same basic process for more
complex fractions
* Special rules for repeated factors and
_.complex factors
Northridge

Review Partial Fraction Rules
. I;zepeated fractions for repeated factors

-1

ce(s+a)" (s+a)" (s+a)"t

(s+a)’ Tsra
e Complex factors (s+ o —Iip)(s + a +iB)
1 As+B

- - :...+ +...
c(s+a-ip)(s+a+if)-- (s+a)*+ p?

 Pure imaginary factor
1 1 As+B

et - - - =t 4ee
s*+ p° e (s—iB)(s+ip)--- s* + p?

* Real squaredlfactors

A B
e ————— e = e 4
Norihidge  * 7 b+ /p)6-17)
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Differential Equations

Review Systems of ODEs

» Apply Laplace transforms to systems of
equations by transforming all ODEs

— Transform ODE terms like y, to Y,(s), dy,/dt
to sY,(s) — y(0), etc.

» Transform all ODEs in system then use
Gaussian elimination to get an equation
for only one Y,(s)

» Get inverse transform from Y ,(s) to y,(t)
* Repeat for all ODEs

Californin State [niversity
Northridge

Review Group Exercise

e Solve y” — 9y = et with y(0) = 0 and
y'(0) = 2 by Laplace transforms

 Transform differential equation:

s2Y(s) — sy(0) —y'(0) —9Y(s) = 1/(s +1)

 Substitute initial conditions and solve
result for Y(s)

S2Y(s) — 0 -2 —-9Y(s) = 1/(s +1)

(s2—-9)Y(s) =2+ 1/(s +1)

Calrforrsi Sate Unfversity
Northridge

Review Group Exercise Il
(s2—-9)Y(s) =2 + 1/(s +1)

o) 2 1
(S)_sz—9+(sz—9)(s+1)

» Use patrtial fractions for last term
1 A B c

P-9G+D) G- G613 G+D
1=AG+1(+3)+B(+1)(s—3)+C(s>-9)

» Set sums of like powers to zero

Californin State [ niversity
Northridge

Review Group Exercise |l

1=A(G+1D(s+3)+B(s+1)(s—3)+C(s*-9)
s’terms: 0=A+4+B+C
slterms: 0 =4A—2B
sPterms: 1=34A-3B-9C
sl equation gives B = 2A
* Substituting B = 2A into s? equation
givesA+2A+C=00rC=-3A A=1/24
* Substitute B =2A and C = -3Ainto s°
gequation to get 1 = 3A — 3(2A) — 9(-3A) )

Northridge 0

Review Group Exercise IV

* FromA=1/24 and B =2A: B=2/24
e FromA=1/24 and C =-3A: C =-3/24

o) 2 A B c
(S)_52—9+(s—3)+(s+3)+(s+1)
2 1 1 2 3

Y(s) = +

s2-9 " 24 (s—3)+(s+3)_(s+1)
* From transform table

2 1
_ 3t -3t _ o -t
y(@) = 3 sinh(3t) + >3 [e3t + 2e 3e~t]

Caboiy e s sinh(x) = [e* +e7*]/2
Northridge v
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Basic Phase Plane Equations

« Look at solution of system of two first-
order autonomous (no t dependence)
homogenous equations

¢ Can be single second order equation
written as two first order equations

2
d72y + Eﬂ + K =0 V= ﬂ
dt® mdt m dt
dv ¢k
—+—V+—y=0
dt
T @ _ % =0
Northridge dt "
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Phase Plane Analysis

an example

without bound?

Cabiforni State Unhersity
Nnrlhlritlge

 Look at solutions of systems of
equations, here use two equations as

Find certain points, called critical points,
that have particular behavior depending
on the eigenvalues of the ODE’s

 This leads to a discussion of stability;
will a solution tend to zero or increase

13

What is a Stable Solution?

« Plot trajectories (plot one dependent
variable against the other)
— For 2 ODE's dy/dt and dv/dt, ploty vs. v

« If at one time the trajectory is within a
distance ¢ of a point P, and for all future
times it remains within a distance 6 of
P,, the solution is stable

» The solution is unstable if it is not stable

* Want to find criteria for stable solutions

Cal .’:|--_|N:|I|-I‘:||nr\'.- 14
Northridge

Undamped Vibrations Example

= d?x/dt? = —w?x

« Equation: d2x/dt2 + @?x = 0 (w2 = k/m)
— Solution: x = (Vy/m)sin ot + X, cos wt
— As system of equations dx/dt = v and dv/dt

— Define y, = x and y, = v to get system of
equations as dy,/dt =y, and dy,/dt = —&?y,

Yi=aY1 HapY, = Y,
' 2
Yo=anY, tayy, =-0"Y,
2
=3 =0 =l g =-0
Northridge 1

Phase Plane Introduction

* Usual plot shows solutions for x =y,
and v = dx/dt = y, as a function of time

3
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Phase Plane Introduction Il

« Phase plane plot 25
shows y, as a 2
function of y, with t| ~ **

1

as a parameter

05

0

Y2

e Same as previous

plot y, is displace- 05

ment and y, is _1':

velocity , N\ /

— Time differs along 25

__’plot 15 -1 05 0 05 1 15
Northridge v

Phase Plane Introduction IlI
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General Form

» Write as matrix equation dy/dt = Ay

* General form for two equations and
solutions in terms of Ax = Ax
eigenvalues and eigenvectors is

dy - Ay y1 =ai Y tanY,
dt Yo =8y tayY,

—t
Y =CXqye " +CyX(pe

Cabiforni State Unhersity
Nnrlhlritlge

gt gt

gt Y1=Cixe ™ +Coxype
“at it

Y2 =CiXp " +CoXpz)€

19

Stable Solution Criteria

* Look at the system of two equations
dy/dt = Ay
— Autonomous systems (no t dependence)
* We will show that stability depends on
the trace of A = a,; + a,, = A, + A,, and
the determinant a,;a,, — a,,8,; and the
discriminant, A = (trace A)2 — 4det A

* Review eigenvalues for 2 x 2 matrix
from September 12 lecture

20

Calbiforni State University
Nnrlhlritlge

Two-by-two Matrix Eigenvalues

Return to Previous Example

« Quadratic ay—A A,
equation with a a 2 =
two roots for 21 2

_____

eigenvalues (8, —A)(ay, —A) —ay8y, =
(311 )/ )‘?‘ T8 — a21a12 =0

dy, _ Y +ay,Y, _

Northridge Dt

= R

e For undamped vibrations we had
Yi=aY1+a,Y, = Ys
Y2 =8y Y, + Y, =—0°Y,;
8y, =28, =0 a3, =1 ay =—0
« This gives trajectory slope as
- 0)2)’1 +0y, _ _‘Dzyl
dy, ayyit+any, 0y +@y, - Yo

22

Calbiforni State University
Nnrthlridge

Continue Undamped Vibration

What Happens ify, =y, = 0?

Cabiforni State Unhersity
Nnrthlridge

for elllpse
dy o’y 2
2=——1 = ydy,=-0ydy,
dy, Y,
y; _ 2 y12 2 2.2 _ 2 2.2
?——0) 7"'0 = YotOY =Y0+0 Y
S S
2.2 2 2.2 2
O Y10+ Y20 yz o o Xo +Vo Vo
% (o

» Have separable solution giving equation

23

+ Autonomous system of two equations

/t Y taxny,

dY1 d% Y tany,

* Trajectory slope, dy,/dy,, depends on
values of A and may be indeterminate
aty; =y,=0

* y, =Yy, =0is called a critical point

- For multidimensional systems y = 0
Nl)l‘thl‘l(lg(

24
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Types of Critical Points

Critical points are points on a y;-y, plot
that are classified depending on the
trajectory shapes at or near these points

» Centers

» Improper Nodes
» Proper Nodes

» Saddle Points

» Spiral Points

Our First Critical Point

¢ The undamped 25
oo ) TN
vibrations
solution is an " i
ellipse that does 05
not go throughy; | & o
=y, = 0 05
« This type of SN /
critical point is ,
called a center 25
» ) -15 -1 -05 0 05 1 15
Northridge 2

Norihridge =
Improper Node
,' T . . 4
— A\ {1\
» |l 1Y 1

» All trajectories, except two of them have the
same limiting direction of the tangents

» The two exceptions will have a different
direction

http://tutorial. math.lamar.edu/Classes/DE/ 27

Northridge ¥

Proper Node
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Unstable Saddle Point
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http://tutorial. math.lamar.edu/Classes/D

Asymptotically Unstable Asyhpt&ibally Stable

Cabiforni State Unhersity

Northridge
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Unstable Spiral Source
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